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Abstract

Based on the micromechanical framework and the second-order transverse effective elastic moduli of fiber-reinforced
composites derived by Ju and Zhang [Int. J. Solids Struct. 35 (1998) 941], effective elasto-(visco-)plastic behavior of
two-phase unidirectional fiber-reinforced ductile matrix composites (FRDMCs) is studied in detail. The circular fibers
are assumed to be elastic and unidirectionally aligned while the matrix phase can be either elastic or plastic, depending
on the local stress state and effective yield criteria. Furthermore, the ensemble-averaged stress norm is constructed based
on the probabilistic distribution of circular fibers, pairwise fiber interactions and the ensemble-area averaging proce-
dure. Together with the plastic flow rule and hardening law postulated in continuum plasticity, the aforementioned
stress norm is employed to characterize the overall yield criteria which determine the elastoplastic behavior of
FRDMC s under general transverse plane-strain loading and unloading histories. As a special case, the initial effective
yield criteria for incompressible ductile matrix containing many unidirectionally aligned cylindrical voids are also
derived. In addition, the overall elasto-viscoplastic behavior of FRDMC:s is investigated based on the Duvaut-Lions
viscoplasticity. Finally, comparison between our theoretical predictions and the available experimental data for
FRDMC:s is performed to illustrate the capability of the proposed framework. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Ductile matrix composites; Randomly located fibers; Aligned circular fibers; Effective elastoplasticity; Micromechanics of
composites

1. Introduction

The improvement in processing and manufacturing technology during recent years facilitates the pro-
duction of advanced composite materials, including the fiber-reinforced ductile matrix composites
(FRDMCs). The matrix materials of the FRDMCs are made of ductile metals or alloys (such as aluminum,
steel or titanium) with high strain capability, whereas the fibers behave elastically (such as the carbon,
boron or glass fibers). Once FRDMCs are loaded beyond the effective yield points, the overall elastoplastic
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response will follow. The optimal microstructural design of FRDMCs enables the stiffness enhancement
within the elastic range and the ductility and strength control within the plastic range. Therefore, it is
desirable to characterize and predict the elastoplastic behavior of FRDMCs. Although engineers can
control the manufacturing of periodic fiber array in FRDMCs with large-diameter fibers, it is difficult and
expensive to achieve periodic fiber distribution with small-diameter fibers (e.g., carbon or glass fibers). The
present study investigates the overall elastoplastic behavior of FRDMCs with unidirectionally aligned yet
randomly located circular fibers. FRDMCs offer highly directional properties such as high specific stiff-
nesses along the fiber direction. However, the elastic and elastoplastic properties along the transverse di-
rection are also an important research topic.

Extensive theoretical methods exist in the literature to predict overall elastic moduli of fiber rein-
forced composites. See, for example, Hill (1963, 1964a), Hashin (1972, 1983), Willis (1981, 1982), Mura
(1987), Zhao and Weng (1990a), Nemat-Nasser and Hori (1993), and Ju and Zhang (1998) for more
details. By adopting the overall elastic moduli of fiber reinforced composites with transversely isotropic
phases (Hill, 1964a,b) first incorporated the plastic flow theory to evaluate the elastoplastic incremental
moduli of FRDMCs. Adams (1970) utilized a finite element analysis together with classical Prandtl—
Reuss flow rule to predict the inelastic behavior of unidirectional composite under transverse normal
loading. Lin et al. (1972a) studied the initial yield surfaces of unidirectional B/Al composites subjected
to combined longitudinal normal, transverse normal, and in-plane longitudinal shear loadings. Subse-
quent study (Lin et al., 1972b) indicated that the yielding initiated at opposite corners of the fiber—
matrix interface closest to adjacent fibers, and that the plastic zone expanded very fast in the matrix
with increasing applied loads.

Hashin (1980) proposed three-dimensional failure criteria for unidirectional fiber composites by con-
sidering four distinct failure modes, resulting in a piecewise smooth failure surface. Dvorak and Bahei-
El-Din (1987) predicted the shape and position of yield surface with the bimodal plasticity theory. Further,
experimental study and comparison with the bimodal theory were presented by Dvorak et al. (1988) and
Dvorak (1991). Based on the Mori-Tanaka method (Mori and Tanaka, 1973) and the framework by
Tandon and Weng (1988), Zhao and Weng (1990b) derived a multiaxial theory of plasticity for a class of
composites containing unidirectionally aligned spheroidal inclusions, including unidirectional fibers as a
special case. DeBotton and Ponte Castaneda (1993) employed a procedure proposed by Ponte Castaneda
(1991, 1992) to obtain both estimates and rigorous bounds for the effective energy functions of fiber-
reinforced composites with general ductile behavior. More recently, Ju and Chen (1994a) proposed a
micromechanical framework to predict the effective elastoplastic behavior of two-phase metal matrix
composites under general loading/unloading histories by considering the first-order stress perturbations of
elastic particles to the ductile matrix. Ju and Tseng (1996, 1997) further improved the foregoing work by
incorporating the second-order stress perturbations due to pairwise particle interactions, following the
work of Ju and Chen (1994b,c).

In accordance with the plasticity theory, every local matrix point has its own plastic field quantities (such
as plastic strains and plastic hardening variables). For a statistically homogeneous ductile matrix composite
containing randomly located yet unidirectionally aligned fibers, the Monte Carlo method would require
hundreds of simulations in order to obtain pointwise elastoplastic response under specified loading history.
Further, statistical averaging of Monte Carlo simulations would need to be performed to render a statis-
tically homogenized (overall) elastoplastic response. This method is impractical owing to the complexity of
random microstructure and the tremendous computational effort. An attractive alternative is to employ the
ensemble-volume averaging method at the micromechanical level. In the present study, the “local stress
norm” is analytically derived for the matrix plasticity formulation by a micromechanical approach which
considers complete second-order pairwise inter-fiber interactions for both the elastic and plastic sub-prob-
lems. Probabilistic ensemble average is subsequently applied to obtain a homogenized plastic yield function.
In addition, the plastic flow rule and hardening law are then postulated at the composite level based on
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continuum plasticity. Therefore, complete second-order macroscopic effective elastoplastic constitutive
models are constructed for FRDMC:s.

The main objective of this paper is to predict effective elastoplastic behavior of two-phase FRDMCs
based on mechanical properties of the constituent phases, volume fractions, random spatial distributions
and micro-geometries of the fibers. Furthermore, the fibers are assumed to be elastic circular cylinders
(randomly located yet unidirectionally aligned), and the ductile matrix behaves elastoplastically under
general loading histories. All fibers are assumed to be nonintersecting and embedded firmly in the matrix
with perfect interfaces.

This paper is organized as follows. In Section 2, effective elastic moduli of two-phase FRDMCs are
summarized based on Ju and Zhang (1998). A second-order formulation is presented in Section 3 to ac-
count for fiber interaction effects. A unified formulation is proposed to derive the overall yield functions for
both fibrous and porous composites. In addition, the plastic flow rule and hardening law are postulated
according to continuum plasticity to characterize the plastic behavior under general one-dimensional
loading and unloading histories (in contrast to monotonic and proportional loadings assumed by many
existing works in the micromechanics literature). Initial effective yield criteria for incompressible ductile
matrix containing many unidirectionally aligned cylindrical voids are presented in Section 4. Furthermore,
in Section 5, plane-strain transverse elastoplastic stress—strain behavior of FRDMC:s is studied for both
uniaxial and biaxial loading conditions. Comparison between our analytical prediction and available ex-
perimental data is also illustrated. Finally, the initial yield surfaces of FRDMCs and viscoplastic extension
are derived in Sections 6 and 7, respectively.

2. Effective elastic moduli of two-phase composites containing randomly located aligned circular fibers

Following the notation in Ju and Zhang (1998), a two-phase composite consists of an elastic matrix
(phase 0) and unidirectionally aligned, infinitely long and randomly located elastic circular fibers (phase 1)
with distinct material properties. The two phases are assumed to be perfectly bonded at interfaces. Fur-
thermore, the composite is assumed to be in a plane-strain state throughout this paper. The relation be-
tween the stress ¢ and strain € at any point x in the a-phase (¢ = 0 or 1) are governed by

a(x) =C, : €(x), (1)
where “:”” denotes the tensor contraction and C, is the plane-strain linearly elastic stiffness tensor. At the

macroscopic level, the overall plane-strain elastic stiffness tensor C, is defined as the relation between
overall averages of stress and strain:

oc=C, e (2)
2.1. Inter-fiber interactions and ensemble-area averaged fields
In Ju and Zhang (1998), it was shown that the approximate ensemble-area averaged eigenstrain (€*)

(accounting for pairwise plane-strain fiber interaction) is related to the noninteracting eigenstrain solution
*0
€* as follows

(@) =T:e", (3)
where the components of the isotropic tensor I' are defined as
Fijk/ = ”/151j/5k1 + Vz((sik5j1 + 51‘/5/1{) (4)

in which (assuming the uniform “radial distribution function” throughout this paper; cf. Ju and Zhang,
1998; Batchelor and Green, 1972; Willis and Acton, 1976; Chen and Acrivos, 1978)
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_ ¢ B(1 — 2v)
V1_4—ﬁ2{_2+7a+[3 } (3)
netap ) °
and
a_(4v0—1)+4(1—vo)(Kl’f)Ko—M’f’ﬂo), (7)
B =(3—dv) +4(1 - v) M‘f’ﬂo, (8)

where ¢ denotes the fiber volume fraction, vy, the Poisson’s ratio of the matrix, and xy, x; and p,, y,, the
plane strain bulk and shear moduli of the matrix and fiber phases, respectively.

Following Ju and Chen (1994b), it can be shown that the averaged strain €, the uniform remote strain €
and the averaged eigenstrain €* are related by (dropping the ensemble notation)

E=€+¢s: €, 9)

where the components of the Eshelby tensor s (for a circular inclusion embedded in an isotropic linear
elastic and infinite matrix) are

0

1
Sijkl = (1 —vo) {(dvo — 1)3;04 + (3 — 4vo) (Oudr + 0udp) },  irjiky 1= 1,2, (10)

See Mura (1987), and Ju and Zhang (1998) for more details. Therefore, we arrive at

€= (—A—s+¢s-I)7"] & (11)
where the fourth-rank tensor A is defined as
A=[C —C " C. (12)

2.2. Effective elastic moduli of two-phase composites with circular fibers

The effective transverse elastic moduli of two-phase composites containing unidirectionally aligned,
randomly located identical elastic circular fibers were derived by Ju and Zhang (1998) as follows

C.=Cy-{I—¢I' - (—A—s+¢s-T)"'}. (13)
Effective plane-strain bulk modulus x, and shear modulus p, can be explicitly evaluated as
8p(1 — o) (71 +72) }

K' =104 1+ , 14

{1 it 2 1
. 8¢(1 — )7, }
Wr = o3 1+ . 15
=l 30 (1)

Egs. (14) and (15) are valid for any arbitrary two-point isotropic “‘radial distribution function”; cf. Ju and
Zhang (1998, p. 949), Verlet and Weis (1972), and Hansen and McDonald (1986). In addition, the effective
transverse Young’s modulus £% and Poisson’s ratio v of a fiber composite are obtained through the fol-
lowing relations:
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" 7 16
T Kt 4 l///ﬁ ( )
Vi = LW:T’ (17)
K* + Ut
where
4yl

= . 18
=1+ i (18)

The effective axial Young’s modulus £ and the effective axial Poisson’s ratio v}, are available from Hashin
(1972)

4y (vi — vo)’
¢ : o 1 ’ (19)
w T T
P (v —w)(%—%)
b 4 by 1
+ U+/10

Ko K1

Ey = Eopo + Er¢p +

Vi = Voo +vig + , (20)

where ¢, =1— ¢.

3. Effective elastoplastic behavior of two-phase fiber-reinforced ductile matrix composites
3.1. Basic consideration

In this section, we consider two-phase composites consisting of elastic cylindrical fibers (with bulk and
shear moduli k; and p,, respectively) unidirectionally aligned in an elastoplastic matrix (with elastic bulk
and shear moduli x, and g, respectively). We employ the commonly used von Mises yield criterion with an
isotropic hardening law for simplicity. Extension to general yield criterion and general hardening law can
be derived similarly. Therefore, the stress 6 and the equivalent plastic strain eé® must satisfy the following
yield condition at any matrix point:

F(o,e") = /H(s) — K(&") <0. (21)

Here, K(eP) is the isotropic hardening function of the matrix-only material. Extension can be made to
accommodate kinematic hardening law. The stress tensor ¢ for the current plane-strain problem reads

g1l 012 0

0= | 02 02 0 (22)
0 0 33
and
033 = V(011 + on). (23)

Moreover, we have H(6) = o : 14 : 6, where I signifies the deviatoric part of the fourth-rank identity tensor
I ie.,

L=1-1a1, (24)
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where 1 is the second-rank identity tensor. Equivalently, we write H(g;;) = H(s;;) = s;;5;, where s;; defines
the second-rank deviatoric stress tensor; i.e., s;; = 0;; — 1/3040;;. It is noted that H (s;;) defines the square of
the deviatoric stress norm.

The total strain e can be decomposed into two parts:

e=¢€"+¢€P (25)

where € is the elastic strain of the matrix and fibers, and €? is the stress-free plastic strain in the plastic
matrix only. Following Ju and Tseng (1996), we shall derive the ensemble averaged yield criterion for the
two-phase composites. Accordingly, we adopt a technique which approximately accounts for the pairwise
interaction among fibers while collecting the local stress perturbations in the plastic matrix. Therefore, we
achieve the complete second-order elastoplastic formulation for two-phase FRDMC:s.

3.2. A second-order formulation accounting for fiber interaction effects

In this paper, we consider small strains and therefore the statistical microstructure of fibers embedded in
a ductile matrix remains essentially unchanged. The microstructure is therefore assumed to be statistically
homogeneous and transversely isotropic with a constant fiber volume fraction during the deformation
process. Furthermore, fibers are considered as elastic cylinders with uniform size.

Similar to Ju and Chen (1994a), H(x|¥) denotes the square of the “current stress norm” at a local point
x for a given fiber configuration %. Clearly, there is no plastic strain in the elastic fibers. Therefore, H(x|¥%)
can be expressed as

6(x|9) : 14 : 6(x|%9) if x in the matrix,

<. —
H(x|9) = {0, otherwise. (26)

Let P(%) denote the probability density function for finding the fiber configuration ¢ in the composite.
Further, (H), (x) defines the ensemble average of H(x|¥) over all possible realizations, where x is in the
matrix phase:

(H), (x) =H"+ / {H(x|9) - H"}P(%)d%. (27)
Here H is the square of the far-field deviatoric stress norm in the matrix:
H =6":1;: 6" (28)

In addition, the total stress at any point x in the matrix is the superposition of the far-field stress 6° and the
perturbed stress ¢’ due to the presence of the fibers:

o(x) =a’ + d'(x), (29)
where ¢” and ¢’ are defined as
" =Cy: €, (30)
and
¢ (x)=GCy: /G(X —x'): e(x)dx'. (31)
A4

Here, € is the elastic strain field induced by the far-field loading, €* denotes the elastic eigenstrain in the
fiber phase, Cy denotes the fourth-rank elasticity tensor of the matrix, and A is the statistically represen-
tative area element (infinitely large compared with the cross-sectional area of a fiber and without any
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prescribed displacement boundary conditions along infinite exterior boundaries). In indicial notation, the
components of the fourth-rank tensor G take the form (cf. Mura, 1987, p. 25; Ju and Zhang, 1998, Eq. (4))

1

Cn(X =X) = 57

Ejkl(_gv 2\107 2, 2 — 4\/0, —1 + 2\)0, 1 — 2\)0)7 (32)
wherer = x — X/, r = ||r||, v is the Poisson’s ratio of the matrix material and the indices i, j, k, / range from

1 to 2. The components of the fourth-rank tensor F — which depends on six scalar quantities By, B>, B3, B,
Bs, Bg — are defined by

Fiju1(Bw) = Bimingmgng + By (dgnng + duning + dpning + 0ming) + B3dymen; + Bydynin; + Bsoyou
+ Bs(010j1 + 640 ) (33)

with the unit normal vector n = r/r, index m =1 to 6.

The unknown elastic eigenstrain e€*(x) within the fibers can be solved by the integral equation obtained
on the basis of the Eshelby’s equivalence principle (Eshelby, 1957), which guarantees that the equilibrium
conditions in both the matrix and fiber phases and the boundary conditions at the fiber-matrix interfaces
are satisfied exactly. The local (pointwise) result becomes

—A:e(x) =€+ / G(x —x/): e (x)dx, (34)

where the fourth-rank tensor A is defined in Eq. (12). For the solution of the ensemble-area averaged
version of Eq. (34), we refer to the derivations contained in Ju and Zhang (1998; p. 944-949).

Following Ju and Zhang (1998), the complete second-order formulation is employed to account for the
pairwise interactions among fibers. Then a matrix point collects the perturbations from all interacting fibers.
Conceptually, there exists a tiny (of the radius a) exclusion zone which excludes the possibility of having the
center of any fiber located within the zone (Ju and Tseng, 1996). The exclusion zone will be neglected in our
treatment because it is very insignificant compared with the entire (infinitely large) statistical averaging
domain.

By using the ensemble-area averaged eigenstrain given in Eq. (3), the stress perturbation in Eq. (31) can
be rewritten as

o (x|x;) =[Co-G(x —x;) - T : €”, (35)
where
Gx—x) = / G(x — x)dx (36)
Q
for x ¢ Q, in which @, is the fiber domain centered at x,. With the help of Eq. (33), G can be expressed as
G(r) = b p*H' —I—p—4H2 (37)
8(1 — Vo) 2 ’
The components of H' and H? are defined by (Ju and Zhang, 1998)
H,, (X1 — Xy) = 2F;;u(—8, 2w, 2, 2—4vy, —1+2v, 1 —2v), (38)
H, (xi — ;) = 2F;;4(24, —4, —4, =4, 1, 1), (39)

where r = x — X, p = a/r, and a is the radius of a fiber. In addition, the elastic noninteracting eigenstrain
€ (corresponding to the single fiber inclusion problem) is given by (Ju and Chen, 1994b.c)
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€'=—(A+s) "€, (40)

where s is the plane-strain Eshelby’s tensor for a cylindrical inclusion, which was given in Ju and Zhang
(1998). Eshelby’s tensor depends on Poisson’s ratio of the matrix and the shape of the cylindrical inclusion.
The components of s for a cylindrical fiber (plane-strain) have been given in Eq. (10).

3.3. A second-order formulation of effective elastoplastic behavior of fiber-reinforced ductile matrix composites

The ensemble-average stress norm for any matrix point x can be calculated by collecting the current
stress norm perturbed due to a fiber centered at x; and averaging over all possible locations of x;.
Therefore, we have

<H>m(x)%H0+/ {H(x|x;) — H}P(x;)dx; + - -, (41)

[x—x1|>a

where P(x;) defines the probability density function for finding a fiber centered at x,. Here, P(x;) is as-
sumed to be statistically homogeneous, isotropic and uniform, and takes the form P(x;) = N /A4, where N is
the total number of fibers dispersed in a representative area 4. Further, in view of the statistical isotropy
and uniformity, Eq. (41) can be rephrased as

<H>m(x)%’Hoﬁ-%/aocrdl”/ozn{H(r)—Ho}d9+..._ (42)

With the help of the two identities Eqgs. (34) and (35) in Ju and Zhang (1998) and the perturbed stress
rendered in Eq. (35), we obtain the ensemble-averaged current stress norm for any matrix point:

(H),(x)=6¢":T:q" (43)
The components of the positive definite fourth-rank tensor T are defined as
T = 11000 + To(0ud + 0:05), i,j=1,2 (44)
with
1 () + 72
2Ty 42T, = 2 (1 — 4vi +4v2) + 16(1 — 2vp)* =22 ¢, 45
1 2 3( A A) ( 0) (OH—ﬁ)Z ( )
1 1 * *2 y%
T2=§+§(10—16VA+16VA)E(]5 (46)

in which the fiber volume fraction ¢ is defined as ¢ = na*(N/A), and v} is the effective axial Poisson’s ratio.
Following Ju and Chen (1994a), the relation between the far-field stress 6° and the macroscopic stress &
is given by

¢’ =P:q, (47)
where the components of P take the form

Pyju = P10;;0u + P2 (00 + 80 (48)
with

2P + 2P, = ! (49)

1+bi¢’
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1
P, — 7 50
2721+ byo) (50)
and the coefficients b, and b, are given by
Vi t+n
=4(1 = 2vy) ——= 1
by ( Vo) it f (51)
2
by ="2. (52)

B

Substitution of Eq. (47) into Eq. (43) then leads to the following expression for the ensemble-averaged
current stress norm at a matrix point:

(H),(x)=6:T:a, (53)
where the positive definite fourth-rank tensor T is defined as

T=P-T-P. (54)
After lengthy algebra, the components of T are derived as

T = T10y0u + Ta(0wdjn + 0udje), (55)
where

R (56)

(1+b19)
= (57)
(1+b29)

In what follows, we will present a unified formulation to represent the ensemble-area averaged yield
function for the two-phase ductile matrix composite, including the special case when all inclusions become
aligned cylindrical voids.

The ensemble-averaged “current stress norm’ for any point x in a two-phase fibrous or porous com-
posite can be defined as

VH)(x)=(1-¢,)Va:T:q, (58)

where ¢ is defined as

| ¢ for cylindrical fibers,
¢ = { 0 for cylindrical voids. (59)
Accordingly, the overall effective yield function for the two-phase FRDMCs can be proposed as
F=(1-¢,)Va:T:6—-K(), (60)

where K(eP) is the isotropic hardening function for the two-phase composite. Furthermore, the effective
ensemble-area averaged plastic strain rate for the FRDMCs can be written as

i -61?“7 . T:o
€ 7)~§f(lf¢f)iﬁ. (61)

For simplicity, the overall associative flow rule is assumed here. Extension to nonassociative flow rule can
be constructed in a similar fashion. The effective equivalent plastic strain rate for the composite is defined as
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o=\l e = 19l (62)

In what follows, for simplicity, the isotropic hardening function is taken as

K(@) = \/H{oy + h(e)") (63)

where oy is the initial yield stress, and / and ¢ define the linear and exponential isotropic hardening pa-
rameters, respectively, for the two-phase composite.

4. Initial yield criteria for incompressible ductile matrix containing randomly located yet aligned identical
cylindrical voids

Let us consider a special problem in this section — the prediction of the initial yield stresses for an
elastically incompressible and perfectly plastic J,-type ductile matrix containing many randomly located yet
aligned identical cylindrical voids at various volume fractions. Clearly, there is nothing inside the voids and
therefore the bulk and shear moduli are zero for voids. Moreover, we have ¢, = 0. Consequently, the yield
criterion becomes (Eq. (60))

F=Ve:T:6- [t (64)

in which the averaged initial yield radius is taken as K = /2/30,.

Since the bulk and shear moduli of voids (x; and y,) vanish and Poisson’s ratio of the matrix (vy) equal
to 1/2, we have a =1, f = —1, (1 —2v) /(e + ) = —1/2 and the following expressions for this special
problem:

N +1 =20+ Vz)zd)a (65)
L =1+2y¢, (66)
and
9
2y 42y, = 1+51 (67)
V2= % + %‘b' (8)

Notice that the effective axial Poisson’s ratio (v}) of this porous material is 1/2 according to Hashin’s upper
bound (Hashin, 1972).

The total averaged stress can be split into two parts:
in which the hydrostatic stress ¢ and deviatoric stress §;; are defined as

— 1= G, = = 1=
o= §0kk and Sij = 0j — go—kkéij' (70)

Accordingly, the initial yield criterion in Eq. (64) can be rephrased as

2 2
y y

where the definition of the deviatoric stress norm is
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Yield Functions
(for $=5% to $=40%)
1.0 S R — —

@ g

S I 4
IS = %

Ll gy

Normalized Deviatoric Yield Stress
°
[ &)

N AR S AR I 1

%9 05 1.0 15 20 "2
Normalized Hydrostatic Yield Stress

Fig. 1. The normalized initial yield surfaces for void volume fractions ¢ varying from 5% to 40%.

Eq. (71) represents an initial yield surface at a specified void volume fraction ¢ in the 6—s space. The initial
yield surfaces for void volume fractions ¢ varying from 0.05 to 0.4 are plotted in Fig. 1, which shows that
the porous metal yields at a lower stress level as the volume fraction of voids ¢ increases.

The yield function corresponding to the noninteracting formulation (inter-void interaction not consid-
ered at all) can be easily derived by the following operations (cf. Ju and Zhang, 1998):

7y —0 and 7y, —1 (73)

Therefore, Eq. (71) is simplified as

2 2
3 G 5 1—¢)
o0 (o) (5) (=9 _, (74)
I1+¢\ oy ay 1+¢
for the noninteracting formulation.
Fig. 2 shows the comparison between the (second-order) interacting and the (first-order) noninteracting

formulations in the predictions of initial yield surfaces for different void volume fractions ¢. It is observed

that the yield surfaces are larger for the noninteracting predictions. It is noted that our noninteracting

formulation does account for the far-field fiber or void interactions, but not the near-field interactions.
In addition, if the applied loading becomes purely hydrostatic, then Eqs. (71) and (74) reduce to

S V3(1+8)

C 14
Interacting : — o =5 (75)
y
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Yield Functions
(for $=10% to ¢=40%)

1.0 P S e

>

| g

— —— With interaction
T No interaction ]

e
®

S
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04 [

Normalized Deviatoric Yield Stress
=3
o

1.0 15
Normalized Hydrostatic Yield Stress

0.0 0.5

Qlat

Fig. 2. Comparison of the normalized initial yield surfaces predicted by the noninteracting and the interacting formulations for void

volume fractions ¢ varying from 10% to 40%.

. . a 1—¢
Noninteracting : — =——. (76)
VAT

Fig. 3 displays the normalized initial yield stresses corresponding to different void volume fractions ¢ for
the noninteracting and interacting formulations under purely hydrostatic loading.
Similarly, for the purely deviatoric loading, the initial yield criteria become
_ 1 — 542
Interacting : — = ¢3¢ —, (77)
1+ (1+34) 0

s_1-¢ (78)

Noninteracting : = .
o VI+¢
The normalized initial yield stresses are rendered in Fig. 4 for different void volume fractions ¢ corre-

sponding to the noninteracting and interacting formulations for purely deviatoric loading.
With the pairwise void interactions accounted for, Eq. (64) can also be expressed as the ensemble-

averaged stresses; namely,

(T] + 2T2) |:O_'%1 + 6’%2:| + 2T16’115’22 + 4]:25'%2 = %0'32/ (79)

For the case of the transverse biaxial loading in the x; and x,-direction, only 1, and &5, exist. Accordingly,
Eq. (79) transforms to
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Fig. 5. The normalized initial yield surfaces under transverse biaxial loading G, and &, for void volume fractions ¢ varying from 10%
to 40%.

2 2
(T, +213) <ﬂ> +<2> +2T1ﬂ2:§. (80)

Oy
Moreover, for the case of combined uniaxial loading along the x;-axis and the transverse torsion in x;—x;,
plane, the initial yield surface in terms of G;; and &, reads
N2 N2 5
_ _ [ _ (G
(T +20) | 22| +4n( 2] ==. (81)
oy ay 3

The families of initial yield surfaces are featured in Figs. 5 and 6, respectively, for the normalized stresses
corresponding to the above two special cases. It is observed that the ellipses in Fig. 5 are oriented along the
45° direction due to the symmetry in 6;; and 6,.

5. Transverse elastoplastic behavior for fiber-reinforced ductile matrix composites

To illustrate the proposed micromechanics-based elastoplastic constitutive model for FRDMC:s, let us
consider two special plane-strain transverse loading conditions.

5.1. Plane-strain uniaxial loading

For the plane-strain, transverse, uniaxial loading along the x;-direction, the applied macroscopic stress &
can be written as
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Fig. 6. The normalized initial yield surfaces under combined uniaxial loading &, and transverse shear G, for void volume fractions ¢
varying from 10% to 40%.
g > O, G33 = v*A6'11, all other 5’{/ =0. (82)

With the help of Egs. (63) and (82), the overall yield function becomes

F(an.@) = (1 - $)\/ (T + 2131 — /3oy + h(@)"). (83)

The macroscopic incremental plastic strain rate defined by Eq. (61) takes the form

_ A L +2% 0 }
Ae? = (1 — ) ——o | ! 2 84

=4 (T\ +20) [ 0 T (84)
for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain can be ex-
pressed as

A" = \ /41— p)AL (85)

From the linear theory of elasticity, the macroscopic incremental elastic strain reads

_ EY — Eiv?? 0 AGyy
A& = | PA T ETVA TR it 86
{ 0 —E\v; — Exviy | EXE, (86)

For the monotonic plane-strain uniaxial loading, the overall stress—strain relation can be solved by in-
tegrating Egs. (84) and (86) as follows:
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_ [EyL—Epv? 0 } a1 A {Tﬁsz 0]
e= i _ ey | g T ) = 7| 87
[ 0 —Evy — Ewvil | ELES (1=9) (T, +2T>) 0 T (87)

where the positive parameter 4 is equal to > A/L. By enforcing the plastic consistency condition F = 0, 4 can
be calculated as

1 (1= @)y /3(T +2D)on —ay "
e - . (88)

To illustrate the capability of the proposed formulation, we compare our analytical prediction with the
experimental data. These experimental data came from the unpublished results of an Air Force Materials
Laboratory program conducted by the General Dynamics Corporation, Fort Worth Division, and quoted
by Adams (1970), Zhao and Weng (1990b), DeBotton and Ponte Castaneda (1993) and other researchers.
Among these experiments, three sets of test data were obtained for the 2024 aluminum alloy reinforced with
unidirectionally aligned boron fibers (with 34% in fiber volume fraction) under the transverse uniaxial
tensile loading. The elastic material moduli for the matrix and fiber, respectively, are

/’L:

Ey = 8100 ksi (55.85 GPa), vo = 0.32 for the 2024 aluminum alloy,

and
E, = 55,000 ksi (379.23 GPa), v =0.20 for the boron fiber.

In addition, the tensile stress—strain curve for the 2024 aluminum alloy (matrix) was also recorded ex-
perimentally. In order to obtain the plastic parameters oy, & and ¢ for the matrix, we first perform the
parameter estimation of the tensile stress—strain curve for the 2024 aluminum alloy. The resulting optimal
values are

oy = 11.5 ksi (79.29 MPa), /=120 ksi (827.4 MPa),  and ¢ =0.6.

Fig. 7 displays the comparison between the experimental data (three tests) from the general dynamics
and our analytical prediction for ¢ = 34%. The elastic response is based on the interacting micromechanical
formulation of Ju and Zhang (1998). It is clear that our prediction agree very well with the elastic and initial
yielding behavior. Shortly after the yield point, the composite exhibits a sudden change in the slope of
experimental data, followed by long flat response up to the ultimate failure of the test specimens. This
phenomenon is mainly due to the progressive interfacial debonding between the fibers and the matrix.
Therefore, we need to incorporate a micromechanical damage model into our elastoplastic framework in
order to account for the stress—strain behavior above the strain level of 0.15%.

Fig. 8 exhibits the predictions of the transverse stress—strain relationships 6, vs. €; (under the uniaxial
tensile loading &;;) of the above 2024 Al-B composites with different fiber volume fractions varying from
10% to 40%.

As a special case, the transverse stress—strain behavior of the 2024 aluminum containing unidirectionally
aligned cylindrical voids is also studied in the same manner for different void volume fractions. From Fig. 9,
it is observed that both the elastic moduli and the initial yield stresses decrease with increasing void volume
fractions.

5.2. Plane-strain biaxial loading

For the plane-strain transverse biaxial loading, the applied macroscopic stress ¢ can be written as

a1 > 0, 0 = Royy, 033 = V*A(ﬁll + 5'22), all other 0 = 0. (89)
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Fig. 7. Overall transverse stress—strain relationship &y, vs. €, of the 2024 Al-B composite for ¢ = 34%. The solid line corresponds to
the present prediction and the circles, squares and triangles correspond to experimental data (General Dynamics, Fort Worth Divi-

sion).
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Fig. 8. Overall transverse stress—strain relationships a; vs. €, of the 2024 Al-B composites for various ¢ = 10%, 20%, 30%, 40%.
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Uniaxial Tension Test (void ¢=10 to 40%)
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Fig. 9. Overall transverse stress—strain relationships &1, vs. €, of the 2024 aluminum alloy containing unidirectionally aligned voids for
various void volume fractions ¢ = 10%, 20%, 30%, 40%.

Here, the stress ratio R is a constant. Specifically, if R =0, the above plane-strain uniaxial loading case will
be recovered. Substituting Egs. (63) and (89) into Eq. (60), the effective yield function for the plane-strain

biaxial loading becomes

Flon,e) = (1= 9)dR)an — 2oy + (@)}, (90)
where
O(R) = \/Ti(1 + R) + 215(1 + R?). 1)
Furthermore, the macroscopic incremental plastic strain rate defined by Eq. (61) takes the form
_ Al [ (1+R)T, 4+ 2T» 0
P _ _ _
A== gy { 0 (1+R)T; + 2RT ©2)

for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain can be ex-

pressed as
A = \[3(1 — §)As. (93)
From the linear elasticity, the macroscopic incremental elastic strain is

o [Ei(1=viR) — Env2(1+R) 0 Adyy
Ae = | A T TVA i 94
€ [ 0 (R —vi)Ey — Exvi(1+R) | EjEy (4)
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For the monotonic plane-strain biaxial loading, the overall stress—strain relation can be derived by in-
tegrating Egs. (92) and (94) as follows:

_ |Ex(1=viR) — E;vi(1 +R) 0 o1 B
€ [ 0 (R —vi)Ey — Ew2(1+R) | By, T 0~ )
A [ (1+R)T + 20 0
* B(®) { 0 (1+R)T, +2RTJ' 93)

Similar to the above procedure, the expression for 4 is

1/q

1 \/%(1 - ¢)®(R)o1 — gy 96)

V- ¢) !

Since no experimental data is available for the plane-strain biaxial loading, we will employ the same
material properties of the boron fiber reinforced 2024 aluminum alloy as Section 5.1. Fig. 10 shows the
predicted stress—strain relationships a1, vs. €, for the 2024 Al-B composite (¢ = 34%) under the plane-
strain biaxial loading for various R values (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4). The stress—strain curves
exhibit less nonlinear behavior with increasing R values until the negative strain effect occurs. Similarly,
Fig. 11 renders the predictions of G5, vs. &; for different R values (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4).

/1:
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Fig. 10. Overall transverse stress—strain relationships G;; vs. €;; of the 2024 Al-B composite (¢ = 34%) for various R under biaxial
loading.
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Fig. 11. Overall transverse stress—strain relationships G vs. €, of the 2024 Al-B composite (¢ = 34%) for various R under biaxial
loading.

6. Initial yield surfaces of fiber-reinforced ductile matrix composites

For general loading conditions, the initial yield surfaces of FRDMCs can be obtained by a procedure
similar to that employed in Section 4. In view of the existence of unidirectionally aligned yet randomly
located fibers, the initial yield criterion reads (cf. Eq. (60))

F=(1-$)Vo:T:a- /3, (97)
where the averaged initial yield radius is K = \/2/_30y. After carrying out the tensor contraction in Eq. (97),
we arrive at

(T, +215) {6{1 + 652} + 27161160 + 41250, = 27652 (98)

3(1-9)

In the case of transverse biaxial loading in the x;- and x,-direction, only &,; and &5, exist. Therefore, Eq.
(98) reduces to

2 2
_ _ 011 (o)) — 011 0 2
F42m) | (28] + (22 | 4o Tuo2_ 2 (99)
oy oy oy oy 3(1— ¢)2

Moreover, for the combined loading involving a tension in the x;-axis and a transverse torsion, the initial
yield surface in terms of ;; and &, reads
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Fig. 12. The normalized initial yield surfaces under transverse biaxial loading &, and &,, for the 2024 Al-B composites with various
fiber volume fractions (¢ = 10%, 20%, 30%, 40%).
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The predictions of initial yield surfaces for the foregoing Al-B composites under the transverse biaxial
loading are shown in Fig. 12 for various fiber volume fractions. The family of ellipses in Fig. 12 features the

same symmetry as that in Fig. 5. In addition, the initial yield surfaces for the combined tensile and shear
loading are depicted in Fig. 13 for different fiber volume fractions.

7. Elasto-viscoplastic behavior of fiber-reinforced ductile matrix composites

Following Simo et al. (1988), Ju (1990) and Ju and Tseng (1997), the rate constitutive equations of the
generalized Duvaut—Lions viscoplasticity (Duvaut and Lions, 1972) can be formulated as

. 1 _
eP=-C':[6-al] (101)
n
o — ,l[évp — &, (102)
n

where 7 is the viscosity coefficient with the unit of time. Moreover, & and e denote the overall stress tensor
and the hardening parameter, respectively, of the inviscid elastoplastic solution. ¢ and ‘P define the total



4066 JW. Ju, X.D. Zhang | International Journal of Solids and Structures 38 (2001) 4045-4069

Yield Functions
(for ¢=10% to 40%)

1.2

=
=]

y

Oz
=~ (e}
&

Normalized stress
°
(=)

e
IS

02 F

0'0 :: 1 ISR FTTSRTRETI IRUTRTRTIFTRTERTRTY SARURRCRTA VAT (STATS ATRY [ETRTIFETRTT] TR FRRCTRTATUNIN| I
00 02 04 06 08 10 12 14_ 16 18 20 22
Normalized Stress Su
O
y

Fig. 13. The normalized initial yield surfaces under combined uniaxial loading &), and transverse shear &, for the 2024 Al-B com-
posites with various fiber volume fractions (¢ = 10%, 20%, 30%, 40%).

averaged stress and the hardening parameter, respectively, of the viscoplastic solution. In addition, €
denotes the viscoplastic strain rate tensor.
We can easily derive the discrete backward Euler algorithm for the viscoplastic problem as follows:

Aty =

0,1+ On+tl
— "
Onil = An, (103)
Svp oy Abugr 5P
gr S0 G (104)
n+ Aty
1+ .
in which 6\, = @, + C. : A€, represents the “elastic predictor”. A€, and Az, denote the overall total

strain increment and time step, respectively. If A¢/n — oo, then the inviscid plasticity is recovered. By
contrast, if A¢/n — 0, then the instantaneous elasticity is recovered. Fig. 14 provides the predictions of
overall elasto-viscoplastic behavior of the above Al-B composites (fiber volume fraction 34%) under the
plane-strain transverse uniaxial tension. It is noted that the overall Duvaut-Lions viscoplastic responses
(n = 107> and 10~*) liec between the elastic solution (4 = 10'%) and the inviscid plastic solution ( = 10~'7).

8. Conclusion

A micromechanical framework is developed in this paper to predict effective elastoplastic behavior of
two-phase FRDMCs containing many unidirectionally aligned yet randomly located elastic cylindrical
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Fig. 14. Predictions of overall transverse elasto-viscoplastic behavior of the Al-B composites under uniaxial tension for different
viscosity parameters 1.

fibers. We have presented a complete second-order formulation using the uniform radial distribution
function of the aligned fibers, explicit pairwise fiber interactions (for both the elastic and plastic sub-
problems), and the ensemble-area averaging procedure. Subsequently, a unified formulation is proposed for
both fibers and voids. The present formulation is capable of treating general plane-strain loading and
unloading histories. However, the current work does not account for thermal loading, residual stress field,
or cyclic fatigue loading. Furthermore, the present method is different from the existing effective medium
methods developed for FRDMC:s since it accommodates explicit inter-fiber interactions and random fiber
distributions.

The initial yield criteria for incompressible ductile matrix containing many identical, aligned cylindrical
voids is studied. The proposed method is applied to the special cases of transverse uniaxial, biaxial and
combined loading to predict the transverse elastoplastic stress—strain responses. Moreover, our plane-strain
uniaxial predictions are compared with the experimental data reported by Adams (1970). The overall
elasto-viscoplastic behavior of FRDMCs is also explored based on the Duvaut-Lions viscoplasticity.
Finally, the stress—strain relations for the Al-B composites under the transverse uniaxial tension is dis-
cussed for different viscosity coefficients 7.

Further research is warranted to incorporate micromechanical damage models into our elastoplastic
framework in order to characterize the progressive interfacial (complete or partial) debonding mechanism
between the fibers and the matrix. Ju and Lee (2000) recently proposed a similar framework along this line
for ductile matrix composites containing randomly dispersed spherical particles with evolutionary complete
interfacial particle debonding.

In the present study, we have assumed that the quadratic functional form of the overall yield function is
similar to that of the matrix material for simplicity. However, in general, this assumption may not be
universal for all FRDMCs. For example, Hashin (1980) and Dvorak et al. (1988) suggested that the overall
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yield function of anisotropic composites be constructed from piecewise smooth sections and not from a
single smooth surface. Furthermore, more general isotropic/kinematic hardening laws and alternative
nonassociative flow rule can be accommodated within the proposed framework based on available ex-
perimental data; see, e.g., Dvorak et al. (1988) for kinematic hardening law and nonassociative flow rule.
These issues will be further studied in the future.
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